
9. Let *P* and *Q* be distinct points on the parabola $y^2 = 2x$ such that a circle with *PQ* as diameter passes through the vertex *O* of the parabola. If *P* lies in the first quadrant and the area of the triangle $\triangle OPQ$ is $3\sqrt{2}$, then which of the following is (are) the coordinates of *P*? (JEE Adv. 2015)

(a)
$$(4, 2\sqrt{2})$$
 (b) $(9, 3\sqrt{2})$
(c) $\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$ (d) $(1, \sqrt{2})$

Solution: -

So (a, d) Let point P in first quadrant, lying on parabola $y^2 = 2x$ be $\left(\frac{a^2}{2}, a\right)$. Let Q be the point $\left(\frac{b^2}{2}, b\right)$. Clearly a > 0.

 \therefore PQ is the diameter of circle through P, O, Q

$$\therefore \quad \angle POQ = 90^\circ \Rightarrow \frac{a}{a^2/2} \times \frac{b}{b^2/2} = -1 \Rightarrow ab = -4$$

 \Rightarrow b is negative.

Also ar. $\triangle POQ = 3\sqrt{2}$

$$\Rightarrow \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ \frac{a^2}{2} & a & 1 \\ \frac{b^2}{2} & b & 1 \end{vmatrix} = 3\sqrt{2}$$